

# IS YOUR ROOF AT RISK? HOW TO SPOT AND FIX CONDENSATION DAMAGE

Roof condensation is a hidden but serious threat to structural integrity. When moisture becomes trapped within the roof cavity, it can corrode metal components (affecting hangers and roof nailing), rot wood framing, and damage beams that support the roof structure.

Unlike active leaks, condensation damage develops slowly and often goes unnoticed—until significant deterioration has occurred. Left unaddressed, it can lead to costly structural repairs, operational disruptions, and long-term safety concerns.

This guide explains how roof condensation forms, what to look for, and the most effective repair solutions to protect your building from long-term damage.

### 1. WHAT IS ROOF CONDENSATION?

Roof condensation is the buildup of moisture within a structure's roof cavity, often trapped by a foil radiant barrier, scrim, or batting insulation. Unlike roof leaks, which allow water to enter from the outside, condensation forms when warm, humid air inside the building meets cooler roof surfaces, causing moisture to turn into liquid.

\_\_\_\_

If left unaddressed, roof condensation can lead to severe structural damage, weakening wood framing, corroding metal components, and even reducing the roof's load-bearing capacity.

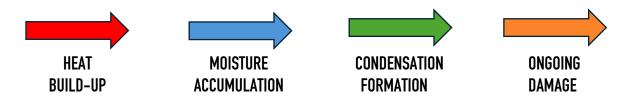
The financial impact varies. Minor condensation issues may only require venting or minor repairs, but prolonged moisture exposure can result in costly structural fixes or roof replacement.

One of the most severe consequences of prolonged condensation damage is the failure of sub-purlins, which can detach and fall due to weakened hangers and moisture-compromised fasteners. If left unaddressed, this can create serious safety hazards for occupants and lead to costly structural repairs.

In fact, one of the more frequent calls we receive is: "Can you come look at this building? A sub-purlin has fallen from the roof—and thank God it didn't hit anyone." This common scenario highlights how serious and sudden the consequences of condensation damage can be.



### 2. HOW DOES ROOF CONDENSATION FORM?


Roof condensation develops when the roof heats up under the afternoon sun, causing the air inside the roof cavity to become very warm. The roof cavity—between the plywood roof deck and foil insulation—can reach temperatures 50 to 70 degrees hotter than the rest of the structure. This heat increases evaporation, drawing moisture into the enclosed space.

As the sun sets, the roof cools rapidly, and the warm, moist air inside the cavity condenses, forming small water droplets that cover metal hardware and soak into wood members.

Since the insulation limits airflow, any moisture that forms becomes trapped between the insulation and the roof structure, with no way to escape. Over time, this daily cycle of heating and cooling leads to a gradual buildup of moisture, increasing the risk of structural damage.

Most roof structures include a vapor retardant, such as a foil radiant barrier or R-11-faced fiberglass batting, which is attached to the sub-purlins or wrapped around the purlin beams at the underside of the roof. In some buildings, the batting is covered with foil insulation—one of the worst scenarios for trapping moisture and creating damaging roof condensation.

#### THE CONDENSATION CYCLE:



| Heat Build-Up          | During the day, roofing materials (especially dark-colored roofs) absorb sunlight, significantly increasing temperatures in the air cavity between the insulation and roof structure—often by 50–70 degrees above ambient temperatures. |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Accumulation  | As the air heats, the molecules expand and hold more water.                                                                                                                                                                             |
| Condensation Formation | At night, when temperatures drop, moisture condenses inside the roof structure, seeping into wood members and accelerating deterioration.                                                                                               |
| Ongoing Damage         | This cycle repeats daily, progressively weakening the roof system.                                                                                                                                                                      |



#### FACTORS THAT INTENSIFY CONDENSATION:

- Humidity Buildings near bodies of water or in humid climates are more prone to condensation damage.
- **Building Materials** New lumber often contains high moisture levels (19% or more). If insulation is installed before the wood fully dries, excess moisture can get trapped inside the structure.
- Roof Leaks Even small roof leaks let water seep in, where it gets trapped by insulation, making condensation problems worse.
- Occupant Operations Industrial processes like baking, manufacturing, or using sealed spaces can
  increase internal humidity. Tenant modifications such as sealing skylights, closing HVAC economizers,
  or adding extra insulation can reduce ventilation and make condensation worse.
- **Vacant Buildings** Empty buildings with poor airflow are more likely to develop condensation issues over time, leading to hidden damage.

#### 3. WHAT TO LOOK FOR: 5 SIGNS OF ROOF CONDENSATION DAMAGE

Identifying condensation issues early is crucial to prevent costly repairs. Key indicators include:

#### Dark Streaking on Purlin Hangers



Dark streaks running down from purlin hangers indicate moisture exposure. These streaks result from iron reacting with trapped moisture, a clear sign of condensation-related damage.

# Discolored/Sagging Sub-Purlin Hangers



If the bottom of the sub-purlin hanger appears white, moisture is affecting the metal. Prolonged exposure to moisture can cause wood framing to warp, weaken, or sag, signaling advanced damage.

# Rusting Gang Nail Plates



Rust forming above the foil insulation line suggests moisture infiltration, which can weaken critical structural connections.



# Black Streaks on Glue-Laminated Beams (GLBs)



Stains on GLB hinge connections indicate ongoing moisture penetration, potentially leading to further deterioration.

# Corrosion on Metal Components



Any visible corrosion on roof hardware, fasteners, or hangers suggests prolonged moisture exposure and weakening of critical structural connections.

Once roof condensation damage is detected, timely repairs are essential to prevent further structural weakening. The following repair options address different levels of damage, from minor ventilation issues to extensive structural reinforcement.

# 4. REPAIR OPTIONS

### **Option 1: Vent or Remove Foil Insulation**

Improving ventilation by modifying or removing foil insulation can help prevent moisture buildup.



**Vent the foil**: Cut back 2–3 inches from where it attaches to purlins or glue-laminated beams (GLBs) to improve airflow and reduce trapped moisture.

**Remove the foil**: In severe cases, removing sections of foil insulation allows the roof cavity to dry naturally.

**Increase ventilation**: Use skylight vents, adjust HVAC economizers, or install additional ventilation to help moisture escape.



Venting or removing foil is one of the least invasive ways to prevent condensation before major repairs are needed.

#### Option 2: Add a Wood Ledger

If sub-purlin hangers are corroding, they may no longer securely hold the sub-purlins in place. Installing a 2x4 wood ledger below the sub-purlins, flat against the purlins and ledgers, provides additional structural support.



**Purpose**: Reinforces the existing 2x4 sub-purlins by redistributing weight and compensating for weakened hangers.

**Installation**: Attach the ledger using Simpson SDS screws spaced 1 foot apart to create a strong, stable connection.

**Additional Reinforcement**: Install Simpson H2.5A hurricane clips every 4 feet to hold sub-purlins securely in place and prevent further shifting.

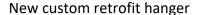
**Roof Nail Deterioration**: If roof nails have weakened due to moisture exposure, re-nailing the roof or adding supplemental fasteners may be required.

This method restores the integrity of the sub-purlins, ensuring long-term stability and preventing further damage from condensation-related weakening.

### Option 3: Install New Hardware or Retrofit Existing Hardware (if Damaged)

If metal connections show signs of rust, they must be inspected and treated before structural damage worsens.




**Inspection**: Check for rusting or staining on the GLB hanger and beam. Cleaning and protective coating may be sufficient if staining is present but corrosion is minimal.

**Cleaning & Coating**: Light surface rust can be removed with a wire brush, followed by a rust inhibitor like Rust Grip to prevent further corrosion.

**Retrofit Hanger Installation**: If a hanger is severely rusted, a new hanger can be installed over the existing one. Place a barrier, such as plastic or duct tape, between the old and new hangers to prevent corrosion transfer.



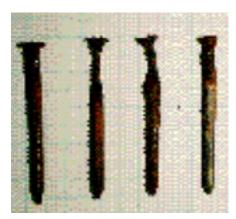






Fabricated angle bracket

**Alternative Support Method**: An 8- to 10-inch-long piece of angle iron can be installed instead of a retrofit hanger. One side is secured to the GLB, while the other supports the bottom of the existing purlin hanger.


**Structural Considerations**: Custom structural details may be required if rusting is too advanced for cleaning and coating. Due to varying load conditions, there is no universal fix.

By reinforcing GLB connections, this repair method extends the lifespan of critical roof components and prevents further deterioration.

### **Option 4: Roof Nailing**

Roof nailing disruption is one of the most serious consequences of roof condensation. Moisture absorbed by the roof sheeting can compromise the nails, reducing the shear strength of the plywood—a critical component in holding the building together at the roofline.

Unfortunately, roofing, HVAC, and insulation contractors often miss this issue, leading to hidden structural risks.



**Inspect Roof Nailing**: A thorough inspection should assess whether moisture has affected the shanks of the nails and weakened their hold.

**Re-Nail or Re-Staple:** If deterioration is present, the roof may need to be removed so that the plywood can be properly re-nailed or re-stapled to restore structural integrity.

**Install Structural Anchors**: As an alternative, anchors can be installed underneath the roof to secure the plywood to the structural roof members. However, this method is time-consuming and costly, making it a secondary option when re-nailing isn't feasible.



By addressing roof nailing issues early, building owners can prevent costly structural failures and ensure the long-term stability of the roof.

## 5. OWNER RESPONSIBILITIES AND PROACTIVE MEASURES

#### **ROUTINE ROOF MAINTENANCE**

A **comprehensive structural inspection** should be standard practice when replacing a roof membrane. Many roofing contractors overlook condensation-related issues, so hiring an expert in roof condensation damage is essential.

#### **KEY INSPECTION POINTS**

| Roof Nailing Integrity    | Inspect nail shanks for deterioration and verify compliance with structural engineering standards. |
|---------------------------|----------------------------------------------------------------------------------------------------|
| Foil Insulation Condition | Remove or properly vent insulation during roof replacement.                                        |
| Skylight Ventilation      | Ensure vents are unobstructed and consider raising skylights to prevent water intrusion.           |
| HVAC Platform Height      | HVAC platforms should be raised at least 8–12 inches above the roof surface.                       |

#### PREVENTING TENANT-INDUCED ISSUES

Building modifications may inadvertently restrict airflow, leading to condensation problems. Owners should:

- Require contractor approval for tenant modifications that affect ventilation.
- Verify that new installations do not create moisture-trapping conditions.

#### PERIODIC STRUCTURAL INSPECTIONS

Regular, thorough inspections are critical for long-term structural health. These assessments help:

- Identify early signs of condensation damage.
- Prevent costly repairs and potential liability issues.



• Ensure compliance with seismic and structural safety standards.

# PROTECT YOUR BUILDING WITH A COMPREHENSIVE ROOF INSPECTION

<u>Roof condensation</u> is more than a minor nuisance—it's a hidden threat that can compromise your building's structural integrity, safety, and value. Regular inspections and proactive maintenance are essential to protecting your building, its occupants, and valuable assets.

While general roofing, insulation, mechanical, or general contractors may conduct inspections, they often miss critical condensation-related issues. These professionals may not be trained to recognize early signs of roof condensation damage or understand how trapped moisture impacts structural integrity over time.

That's why working with a specialized expert is crucial. <u>Saunders Seismic</u> has extensive experience diagnosing and repairing roof condensation problems, ensuring a thorough, multi-faceted evaluation of your building's condition. Our team provides comprehensive assessments and tailored repair solutions that go beyond standard contractor inspections.

<u>Contact Saunders Seismic today</u> to schedule an inspection and protect your commercial or industrial property from costly condensation damage.